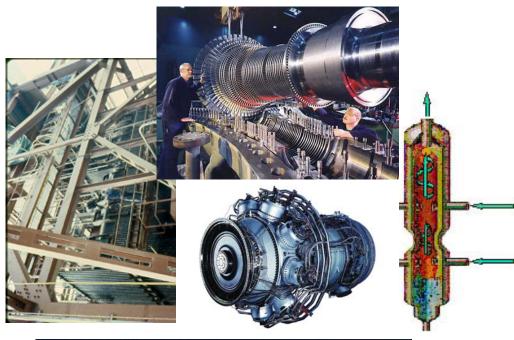


TASK GROUP REVIEWS

Fossil-fuelled Power Generation Colin Small (Rolls-Royce plc)

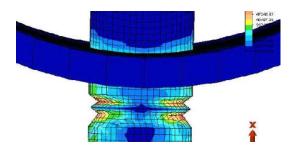
Energy Materials



- Contents.
 - Scope.
 - Drivers.
 - Main approaches.
 - Generic technology.
 - Materials challenges 5, 10 and 20 years.
 - UK capability.

- Scope.
 - Boilers.
 - Steam Turbines.
 - Gas Turbines.
 - Gasifiers.
 - CO₂ Capture.

- Drivers.
 - Reduction of CO₂ emissions.
 - Cost (original manufacturer, ownership/use and end of life disposal).


- Main approaches.
 - Increasing plant efficiency.
 - Co-firing with renewable fuels.
 - CO₂ sequestration.

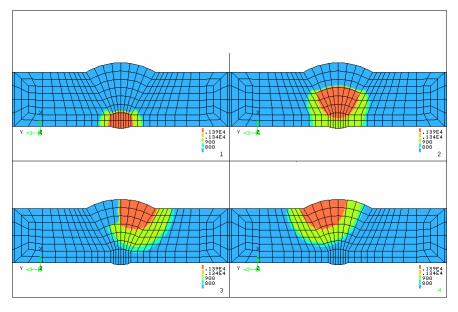
Generic technologies

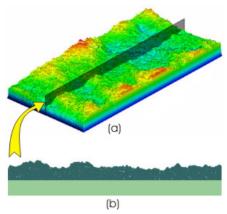
- Surface protection technologies (coatings).
- Non-destructive evaluation (NDE).
- Lifing.
- Repair.
- Joining.
- Recycling

- Key Materials
 Challenges 5 Years.
 - Production and characterisation of prototype components manufactured using identified materials and processes.
 - Repair and improvement solutions for existing plant and materials.
 - Advanced manufacturing development for existing materials and processes aimed at cost reduction, increased performance and integrity.

Refurbishment and Repair of a Steam Turbine - © Sulzer Metco

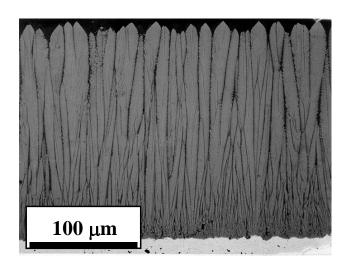
Repair and refurbishment.

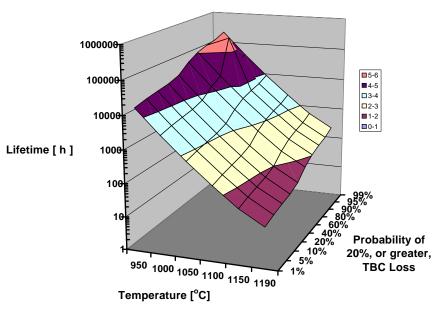

- For current materials,
 affordable extension of life of current plant.
- For new materials –
 extended reliable
 operation. Designed in as
 part of materials
 development.
- Predictable refurbishment intervals (minimum disruption).



Key Materials Challenges – 10 Years.

- Development of new material systems (substrate and coatings) based on existing knowledge including behaviour in realistic environments.
- Development and application of process modelling to new materials to speed up introduction and help define new system solutions.
- Adopting a total system approach to critical part design and life prediction with multimaterial components with joints and coatings.





Modelling Materials.

- Linked (Integrated?) models
 - Material systems substrate and coatings.
 - Process.
 - Properties.
 - Environmental effects.

- Key Materials
 Challenges 20

 Years.
 - Development of novel material systems that will enable high overall efficiencies that will significantly reduce emissions and
 - Initial characterisation to identify most promising approaches.

Image © Berlin TU

- Novel Materials Technology.
 - Gas turbine materials targets for 2020.
 - Density <7g cm-3.
 - T capability >2100K.
 - Oxidation resistance 1450K.
 - Creep +100K over current.
 - Ductility equivalent to Ti.
 - Recyclable
 - Material ????
 - Manufacturing process??
 - Etc.

- Skills and Capabilities.
 - UK based OEMs with technical capability to develop and deploy new materials.
 - End users with need to improve/repair, extend plant life and capability to develop the appropriate solutions.
 - Supply chain capability in limited areas to develop and supply new materials.
 - Strong academic groups and RTOs involved in materials design, development, NDE, repair, joining and lifing.
- UK has capability to rise to challenge.

Thank you

With acknowledgement to the coauthors and all others who contributed to this report